SLVS010D - JANUARY 1976 - REVISED OCTOBER 1995

- 3-Terminal Regulators
- Output Current Up to 100 mA
- No External Components
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting
- Direct Replacements for Fairchild μA78L00 Series

description

This series of fixed-voltage monolithic integratedcircuit voltage regulators is designed for a wide range of applications. These applications include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. In addition, they can be used with power-pass elements to make high-current voltage regulators. One of these regulators can deliver up to 100 mA of output current. The internal limiting and thermal shutdown features of these

regulators make them essentially immune to overload. When used as a replacement for a zener diode-resistor combination, an effective improvement in output impedance can be obtained together with lower-bias current.

			PACKAGEI	D DEVICES		
ТJ	V _{O(nom)}	PLASTIC DIP (D)		PLASTIC CY (L	'LINDRICAL P)	
	(V)		(1)			
		5%	10%	5%	10%	
	2.6	μA78L02ACD	μA78L02CD	µA78L02ACLP	μA78L02CLP	μA78L02Y
	5	μA78L05ACD	μA78L05CD	µA78L05ACLP	µA78L05CLP	μA78L05Y
	6.2	μA78L06ACD	μA78L06CD	µA78L06ACLP	µA78L06CLP	μA78L06Y
0°C to 125°C	8	µA78L08ACD	μA78L08CD	µA78L08ACLP	µA78L08CLP	μA78L08Y
0 0 10 125 0	9	μA78L09ACD	μA78L09CD	µA78L09ACLP	µA78L09CLP	μA78L09Y
	10	μA78L10ACD	μA78L10CD	μA78L10ACLP	μA78L10CLP	μA78L10Y
	12	μA78L12ACD	μA78L12CD	μA78L12ACLP	μA78L12CLP	μA78L12Y
	15	μA78L15ACD	μA78L15CD	μA78L15ACLP	μA78L15CLP	μA78L15Y
40°C to 125°C	5	µA78L05AQD	μA78L05QD	μA78L05QLP	μA78L05QLP	_
-40 0 10 125 0	12	μA78L12AQD	μA78L12QD	μA78L12QLP	μA78L12QLP	—

AVAILABLE OPTIONS

D and LP packages are available taped and reeled. Add R suffix to devise type (e.g., µA78L05ACDR).

SLVS010D - JANUARY 1976 - REVISED OCTOBER 1995

schematic

Resistor values shown are nominal.

SLVS010D - JANUARY 1976 - REVISED OCTOBER 1995

μ A78xxY chip information

These chips, when properly assembled, display characteristics similar to the μ A78xxY. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. The chips may be mounted with conductive epoxy or a gold-silicon preform.

SLVS010D - JANUARY 1976 - REVISED OCTOBER 1995

µA78LxxC absolute maximum ratings over operating temperature range (unless otherwise noted)

	μΑ78L02C, μΑ78L02AC THROUGH μΑ78L10C, μΑ78L10AC	μΑ78L12C, μΑ78L12AC μΑ78L15C, μΑ78L15AC	UNIT				
Input voltage	30	35	V				
Continuous total power dissipation (see Note 1)	See Dissipation Rating Tables 1 and 2						
Operating free-air, T_A , case, T_C , or virtual junction, T_J , temperature range	0 to 125	0 to 125	°C				
Storage temperature range, T _{stg}	-65 to 150	-65 to 150	°C				
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260	260	°C				

NOTE 1: To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

µA78LxxQ absolute maximum ratings over operating temperature range (unless otherwise noted)

	μ Α78L05Q , μ Α78L05AQ	μ Α78L12Q , μ Α78L12AQ	UNIT				
Input voltage	30	35	V				
Continuous total power dissipation (see Note 1)	See Dissipation Rating Tables 1 and 2						
Operating free-air, T_A , case, T_C , or virtual junction, T_J , temperature range	-40 to 150	-40 to 150	°C				
Storage temperature range, T _{stg}	-65 to 150	-65 to 150	°C				
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260	260	°C				

NOTE 1: To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

DISSIPATION RATING TABLE 1 – FREE-AIR TEMPERATURE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	DERATE ABOVE T _A	T _A = 70°C POWER RATING
D	725 mW	5.8 mW/°C	25°C	464 mW
LP†	775 mW	6.2 mW/°C	25°C	496 mW

[†] The LP package dissipation rating is based on thermal resistance $R_{\theta JA}$ measured in still air with the device mounted in an Augat socket. The bottom of the package is 10 mm (0.375 in) above the socket.

DISSIPATION RATING TABLE 2 – CASE TEMPERATURE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	DERATE ABOVE T _C	T _C = 125°C POWER RATING
D	1600 mW	19.6 mW/°C	65°C	424 mW
LP	1600 mW	28.6 mW/°C	94°C	713 mW

SLVS010D - JANUARY 1976 - REVISED OCTOBER 1995

recommended operating conditions

		MIN	MAX	UNIT
	MIN µA78L02C, µA78L02AC 4.75 µA78L05C, µA78L05AC, µA78L05AQ 7 µA78L05Q, µA78L05AQ 7 µA78L06C, µA78L06AC 8.5 µA78L08C, µA78L08AC 10.5 µA78L09C, µA78L09AC 11.5 µA78L10C, µA78L10AC 12.5 µA78L12Q, µA78L12AQ 14.5 µA78L15C, µA78L15AC 17.5 µA78L15C, µA78L15AC 17.5 µA78L15C, µA78L15AC 17.5 µA78L15C, µA78L15AC 17.5	20		
voltage, V ₁ t current, I _O with a given temperature, T _J μΑ78L02C, μΑ78L02AC μΑ78L05C, μΑ78L05AQ μΑ78L05C, μΑ78L05AQ μΑ78L06C, μΑ78L06AC μΑ78L09C, μΑ78L08AC μΑ78L12C, μΑ78L10AC μΑ78L12C, μΑ78L12AC, μΑ78L12C, μΑ78L12AC, μΑ78L15C, μΑ78L12AQ μΑ78L15C, μΑ78L15AC μΑ78LxxC thru μΑ78LxxAC μΑ78LxxQ and μΑ78LxxAQ	7	20		
	μΑ78L06C, μΑ78L06AC	8.5	20	
Input voltage, Vi	μΑ78L08C, μΑ78L08AC	10.5	23	V
input voltage, v	MIN MAX µA78L02C, µA78L02AC 4.75 20 µA78L05C, µA78L05AC, µA78L05Q, µA78L05AQ 7 20 µA78L06C, µA78L06AC 8.5 20 µA78L08C, µA78L08AC 10.5 23 µA78L09C, µA78L09AC 11.5 24 µA78L10C, µA78L10AC 12.5 25 µA78L12C, µA78L12AC, µA78L12Q, µA78L12AQ 14.5 27 µA78L15C, µA78L15AC 17.5 30 berature, TJ µA78LxxC thru µA78LxxAQ 0 125	v		
	μΑ78L10C, μΑ78L10AC	12.5	25	
$\begin{array}{l} \mu A78L02C, \\ \mu A78L05C, \\ \mu A78L05C, \\ \mu A78L05C, \\ \mu A78L05C, \\ \mu A78L08C, \\ \hline \\ \mu A78L09C, \\ \mu A78L09C, \\ \hline \\ \mu A78L10C, \\ \mu A78L10C, \\ \hline \\ \mu A78L12C, \\ \mu A78L12C, \\ \hline \\ \mu A78L12C, \\ \hline \\ \mu A78L15C, \\ \hline \\ \hline \\ Operating virtual junction temperature, T_J \\ \end{array}$	μΑ78L12C, μΑ78L12AC, μΑ78L12Q, μΑ78L12AQ	14.5	27	
	MIN N μA78L02C, μA78L02AC 4.75 μA78L05C, μA78L05AC, μA78L05Q, μA78L05AQ 7 μA78L05Q, μA78L05AQ 7 μA78L06C, μA78L06AC 8.5 μA78L08C, μA78L08AC 10.5 μA78L09C, μA78L09AC 11.5 μA78L10C, μA78L10AC 12.5 μA78L12C, μA78L12AC, μA78L12Q, μA78L12AQ 14.5 μA78L15C, μA78L15AC 17.5 μA78LxxC thru μA78LxxAC 0 μA78LxxQ and μA78LxxAQ -40	30		
Output current, IO			100	mA
	μA78LxxC thru μA78LxxAC	0	125	°C
operating virtual junction temperature, 1	μA78LxxQ and μA78LxxAQ	MIN MAX MAX λ, μΑ78L02AC 4.75 20 λ, μΑ78L05AC, 7 20 λ, μΑ78L05AQ 7 20 λ, μΑ78L05AQ 7 20 λ, μΑ78L05AQ 7 20 λ, μΑ78L06AC 8.5 20 λ, μΑ78L09AC 10.5 23 λ, μΑ78L09AC 11.5 24 λ, μΑ78L10AC 12.5 25 λ, μΑ78L12AC, 14.5 27 λ, μΑ78L15AC 17.5 30 100 100 125 λ μΑ78L15AC 0 125 λ μΑ78L15AC 17.5 30	U	

SLVS010D - JANUARY 1976 - REVISED OCTOBER 1995

electrical characteristics at specified virtual junction temperature, $V_I = 9 V$, $I_O = 40 mA$ (unless otherwise noted)

	TEST COL		. ,†	μ /	78L02	C	μΑ	78L02A	C	
PARAMETER	TEST CO	NDITIONS	IJ	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
			25°C	2.4	2.6	2.8	2.5	2.6	2.7	
Output voltage [‡]	VI = 4.75 V to 20 V,	I_{O} = 1 mA to 40 mA		2.35		2.85	2.45		2.75	V
	$I_{O} = 1 \text{ mA to } 70 \text{ mA}$		Fuillanges	2.35		2.85	2.45		2.75	
Input voltage	V _I = 4.75 V to 20 V		25%		20	125		20	100	m\/
regulation	$V_I = 5 V$ to 20 V		25 C		16	100		16	75	
Ripple rejection	$V_{I} = 6 V \text{ to } 20 V,$	f = 120 Hz	25°C	42	51		43	51		dB
Output voltage	I_{O} = 1 mA to 100 mA		25°C		12	50		12	50	m\/
regulation	$I_{O} = 1 \text{ mA to } 40 \text{ mA}$		25 C		6	25		6	25	1110
Output noise voltage	f = 10 Hz to 100 kHz		25°C		30			30		μV
Dropout voltage			25°C		1.7			1.7		V
Diag ourrest			25°C		3.6	6		3.6	6	A
Bias current			125°C			5.5			5.5	mA
Diag ourrest shange	$V_I = 5 V$ to 20 V		Eull manage 8			2.5			2.5	
bias current change	$I_{O} = 1 \text{ mA to } 40 \text{ mA}$		Full ranges			0.2			0.1	mA

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

§ Full range virtual junction temperature is 0°C to 125°C for μA78L02, μA78L02AC, μA78L05C, and μA78L05AC and –40°C to 125°C for μA78L05Q and μA78L05AQ.

electrical characteristics at specified virtual junction temperature, $V_I = 10 V$, $I_O = 40 mA$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS		т,†	μ Α78L05C, μ Α78L05Q			μ Α78L05AC, μ Α78L05AQ			UNIT	
				MIN	TYP	MAX	MIN	TYP	MAX		
			25°C	4.6	5	5.4	4.8	5	5.2		
Output voltage‡	VI = 7 V to 20 V,	I_{O} = 1 mA to 40 mA		4.5		5.5	4.75		5.25	V	
	$I_{O} = 1 \text{ mA to } 70 \text{ mA}$		Full ranges	4.5		5.5	4.75		5.25		
Input voltage	$V_{I} = 7 V \text{ to } 20 V$		25%0		32	200		32	150	m\/	
regulation	V _I = 8 V to 20 V		25 0		26	150		26	100		
Ripple rejection	VI = 8 V to 18 V,	f = 120 Hz	25°C	40	49		41	49		dB	
Output voltage	$I_{O} = 1 \text{ mA to } 100 \text{ mA}$		25%0		15	60		15	60		
regulation	$I_{O} = 1 \text{ mA to } 40 \text{ mA}$		25-0		8	30		8	30	mv	
Output noise voltage	f = 10 Hz to 100 kHz		25°C		42			42		μV	
Dropout voltage			25°C		1.7			1.7		V	
Diag ourrest			25°C		3.8	6		3.8	6	A	
Bias current			125°C			5.5			5.5	^{mA}	
Diag ourrest shange	VI = 8 V to 20 V					1.5			1.5	;	
Bias current change	$I_{O} = 1 \text{ mA to } 40 \text{ mA}$		Full ranges			0.2			0.1	mA	

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

§ Full range virtual junction temperature is 0°C to 125°C for μA78L02, μA78L02AC, μA78L05C, and μA78L05AC and –40°C to 125°C for μA78L05Q and μA78L05AQ.

SLVS010D – JANUARY 1976 – REVISED OCTOBER 1995

electrical characteristics at specified virtual junction temperature, $V_I = 12 V$, $I_O = 40 mA$ (unless otherwise noted)

	TEST CON	IDITIONS	T .†	μ /	478L06	С	μΑ			
PARAMETER	TEST COM	DITIONS	່ງ	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
			25°C	5.7	6.2	6.7	5.95	6.2	6.45	
Output voltage [‡]	VI = 8.5 V to 20 V,	$I_{O} = 1 \text{ mA to } 40 \text{ mA}$		5.6		6.8	5.9		6.5	V
	$I_{O} = 1 \text{ mA to } 70 \text{ mA}$		Fuillanges	5.6		6.8	5.9		6.5	
Input voltage	V _I = 8.5 V to 20 V		25%0		35	200		35	175	m\/
regulation	$V_I = 9 V$ to 20 V		25 0		29	150		29	125	1110
Ripple rejection	VI = 10 V to 20 V,	f = 120 Hz	25°C	39	48		40	48		dB
Output voltage	I _O = 1 mA to 100 mA		25%		16	80		16	80	
regulation	$I_{O} = 1 \text{ mA to } 40 \text{ mA}$		25-0		9	40		9	40	mv
Output noise voltage	f = 10 Hz to 100 kHz		25°C		46			46		μV
Dropout voltage			25°C		1.7			1.7		V
Diag ourrest			25°C		3.9	6		3.9	6	
Bias current			125°C			5.5			5.5	mA
Dies summert shores	V _I = 9 V to 20 V		E. II			1.5			1.5	
bias current change	$I_{O} = 1 \text{ mA to } 40 \text{ mA}$		Full ranges			0.2			0.1	ma

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

§ Full range virtual junction temperature is 0°C to 125°C for μA78L06C, μA78L06AC, μA78L08AC, and μA78L08AC.

electrical characteristics at specified virtual junction temperature, $V_I = 14$ V, $I_O = 40$ mA (unless otherwise noted)

	TEST CONDITIONS	T .†	μ	478L08	С	μΑ	NC	LINUT		
PARAMETER	TEST CONDITIONS	'J'	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
		25°C	7.36	8	8.64	7.7	8	8.3		
Output voltage [‡]	$V_{I} = 10.5 V \text{ to } 23 V$, $I_{O} = 1 \text{ mA to } 40 \text{ mA}$		7.2		8.8	7.6		8.4	V	
	I _O = 1 mA to 70 mA	Full ranges	7.2		8.8	7.6		8.4		
Input voltage	VI = 10.5 V to 23 V	25%0		42	200		42	175		
regulation	V _I = 11 V to 23 V	25-0		36	150		36	125		
Ripple rejection	V _I = 13 V to 23 V, f = 120 Hz	25°C	36	46		37	46		dB	
Output voltage	I _O = 1 mA to 100 mA	25%0		18	80		18	80		
regulation	I _O = 1 mA to 40 mA	25.0		10	40		10	40	mv	
Output noise voltage	f = 10 Hz to 100 kHz	25°C		54			54		μV	
Dropout voltage		25°C		1.7			1.7		V	
Diag ourrent		25°C		4	6		4	6	~ ^	
Bias current		125°C			5.5			5.5	mA	
Diag ourrest shange	$V_{I} = 5 V \text{ to } 20 V$				1.5			1.5		
bias current change	$I_{O} = 1 \text{ mA to } 40 \text{ mA}$				0.2			0.1	mA	

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

§ Full range virtual junction temperature is 0°C to 125°C for μA78L06C, μA78L06AC, μA78L08AC.

SLVS010D - JANUARY 1976 - REVISED OCTOBER 1995

electrical characteristics at specified virtual junction temperature, $V_I = 16 V$, $I_O = 40 mA$ (unless otherwise noted)

	TEST CONDITIONS	. ,†	μ	478L09	C	μΑ	78L09A	C		
PARAMETER	TEST CONDITIONS	i ji	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
		25°C	8.3	9	9.7	8.6	9	9.4		
Output voltage [‡]	$V_{I} = 12 V \text{ to } 24 V$, $I_{O} = 1 \text{ mA to } 40 \text{ mA}$		8.1		9.9	8.55		9.45	V	
	I _O = 1 mA to 70 mA	Full ranges	8.1		9.9	8.55		9.45]	
Input voltage	V _I = 12 V to 24 V	25%		45	225		45	175	m\/	
regulation	VI = 13 V to 24 V	25 C		40	175		40	125		
Ripple rejection	$V_{I} = 15 V \text{ to } 25 V$, $f = 120 \text{ Hz}$	25°C	36	45		38	45		dB	
Output voltage	I _O = 1 mA to 100 mA	25%		19	90		19	90	m\/	
regulation	$I_{O} = 1 \text{ mA to } 40 \text{ mA}$	25 C		11	40		11	40	mv	
Output noise voltage	f = 10 Hz to 100 kHz	25°C		58			58		μV	
Dropout voltage		25°C		1.7			1.7		V	
Diag ourrest		25°C		4.1	6		4.1	6	A	
bias current		125°C			5.5			5.5	mA	
Pige ourrest shange	V _I = 13 V to 24 V				1.5			1.5		
bias current change	$I_{O} = 1 \text{ mA to } 40 \text{ mA}$				0.2			0.1	ША	

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

§ Full range virtual junction temperature is 0°C to 125°C for μA78L09C, μA78L09AC, μA78L10C, and μA78L10AC.

electrical characteristics at specified virtual junction temperature, $V_I = 14$ V, $I_O = 40$ mA (unless otherwise noted)

	TEST CONDITIONS	T .†	μ	478L10	С	μΑ	78L10A	۲C	LINUT
PARAMETER	TEST CONDITIONS	I II	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		25°C	9.2	10	10.8	9.6	10	10.4	
Output voltage [‡]	$V_{I} = 13 V \text{ to } 25 V$, $I_{O} = 1 \text{ mA to } 40 \text{ mA}$		9		11	9.5		10.5	V
	I _O = 1 mA to 70 mA	Full ranges	9		11	9.5		10.5	
Input voltage	VI = 13 V to 25 V	25°C		51	225		51	175	
regulation	V _I = 14 V to 25 V	25.0		42	175		42	125	
Ripple rejection	V _I = 15 V to 25 V, f = 120 Hz	25°C	36	44		37	44		dB
Output voltage	I _O = 1 mA to 100 mA	25%		20	90		20	90	
regulation	I _O = 1 mA to 40 mA	25.0		11	40		11	40	mv
Output noise voltage	f = 10 Hz to 100 kHz	25°C		62			62		μV
Dropout voltage		25°C		1.7			1.7		V
Dies summent		25°C		4.2	6		4.2	6	A
Bias current		125°C			5.5			5.5	mA
Dies sument shores	V _I = 14 V to 25 V	5			1.5			1.5	A
bias current change	$I_{O} = 1 \text{ mA to } 40 \text{ mA}$				0.2			0.1	mA

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

§ Full range virtual junction temperature is 0°C to 125°C for μA78L09C, μA78L09AC, μA78L10C, and μA78L10AC.

SLVS010D – JANUARY 1976 – REVISED OCTOBER 1995

electrical characteristics at specified virtual junction temperature, $V_I = 19 V$, $I_O = 40 mA$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS	т, †	μ Α78L12C, μ Α78L12Q		μ Α78L12AC, μ Α78L12AQ			UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX	
		25°C	11.1	12	12.9	11.5	12	12.5	
Output voltage‡	V_{I} = 14 V to 27 V, I_{O} = 1 mA to 40 mA	E. II man maß	10.8		13.2	11.4		12.6	V
	I _O = 1 mA to 70 mA	Full ranges	10.8		13.2	11.4		12.6	1
Input voltage	V _I = 14.5 V to 27 V	05%0		55	250		55	250	m∨
regulation	VI = 16 V to 27 V	25°C		49	200		49	200	
Ripple rejection	$V_{I} = 15 V \text{ to } 25 V$, $f = 120 \text{ Hz}$	25°C	36	42		37	42		dB
Output voltage	I _O = 1 mA to 100 mA	25%0		22	100		22	100	
regulation	I _O = 1 mA to 40 mA	25.0		13	50		13	50	mv
Output noise voltage	f = 10 Hz to 100 kHz	25°C		70			70		μV
Dropout voltage		25°C		1.7			1.7		V
Diag automati		25°C		4.3	6.5		4.3	6.5	
Bias current		125°C			6			6	mA
Diag ourrest shorts	V _I = 16 V to 27 V				1.5			1.5	A
Bias current change	$I_{O} = 1 \text{ mA to } 40 \text{ mA}$				0.2			0.1	mA

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

§ Full range virtual junction temperature is 0°C to 125°C for μA78L12C, μA78L12AC, μA78L15C, and μA78L15AC.

electrical charac	cteristics at spec	fied virtual ju	unction tempera	ture, V _I = 23 '	V, I _O = 40 m	A (unless
otherwise noted	l) .	-	•	•		•

	TEST CONDITIONS	т.†			A78L15	С	μΑ	78L15/	AC	LINUT
PARAMETER	TEST CONDITIONS	1,11	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
		25°C	13.8	15	16.2	14.4	15	15.6		
Output voltage‡	$V_{I} = 17.5 V \text{ to } 30 V$, $I_{O} = 1 \text{ mA to } 40 \text{ mA}$		13.5		16.5	14.25		15.75	V	
	I _O = 1 mA to 70 mA	Full ranges	13.5		16.5	14.25		15.75		
Input voltage	VI = 17.5 V to 30 V	25%		65	300		65	300	mV	
regulation	V _I = 20 V to 30 V	25-0		58	250		58	250		
Ripple rejection	VI = 18.5 V to 28.5 V, f = 120 Hz	25°C	33	39		34	39		dB	
Output voltage	I _O = 1 mA to 100 mA	0500		25	150		25	150		
regulation	I _O = 1 mA to 40 mA	25%	15	15	75		15	75	mv	
Output noise voltage	f = 10 Hz to 100 kHz	25°C		82			82		μV	
Dropout voltage		25°C		1.7			1.7		V	
Diag automat		25°C		4.6	6.5		4.6	6.5		
Bias current		125°C			6			6	mA	
Dies surrent shange	V _I = 10 V to 30 V				1.5			1.5		
Bias current change	I _O = 1 mA to 40 mA	Full ranges			0.2			0.1	mA	

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

§ Full range virtual junction temperature is 0°C to 125°C for μA78L12C, μA78L12AC, μA78L15C, and μA78L15AC.

SLVS010D - JANUARY 1976 - REVISED OCTOBER 1995

electrical characteristics at specified virtual junction temperature, $V_I = 9 V$, $I_O = 40 mA$, $T_A = 25^{\circ}C$ (unless otherwise noted)

DADAMETED	TEST CONDITIONST	μ Α78L02Υ	LINUT
FARAIVIETER	TEST CONDITIONS	MIN TYP MAX	
Output voltage [‡]		2.6	V
Input voltage	VI = 4.75 V to 20 V	20	m\/
regulation	V _I = 5 V to 20 V	16	mv
Ripple rejection	$V_{I} = 6 V \text{ to } 20 V$, $f = 120 \text{ Hz}$	51	dB
Output voltage	I _O = 1 mA to 100 mA	12	m∨
regulation	$I_{O} = 1 \text{ mA to } 40 \text{ mA}$	6	
Output noise voltage	f = 10 Hz to 100 kHz	30	μV
Dropout voltage		1.7	V
Bias current		3.6	mA

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

electrical characteristics at specified virtual junction temperature, $V_I = 10 V$, $I_O = 40 mA$, $T_A = 25^{\circ}C$ (unless otherwise noted)

DADAMETED	TEST CONDITIONST	μ 4			
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output voltage [‡]			5		V
Input voltage	$V_{I} = 7 V \text{ to } 20 V$		32		
regulation	$V_{I} = 8 V \text{ to } 20 V$		IIIV		
Ripple rejection	$V_{I} = 8 V \text{ to } 18 V$, $f = 120 \text{ Hz}$		49		dB
Output voltage	I _O = 1 mA to 100 mA	15			
regulation	$I_{O} = 1 \text{ mA to } 40 \text{ mA}$		8		IIIV
Output noise voltage	f = 10 Hz to 100 kHz		42		μV
Dropout voltage			1.7		V
Bias current			3.8		mA

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

electrical characteristics at specified virtual junction temperature, $V_I = 12 V$, $I_O = 40 mA$, $T_A = 25^{\circ}C$ (unless otherwise noted)

DADAMETED	TEST CONDITIONST	μ Α	LINUT		
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output voltage [‡]			6.2		V
Input voltage	VI = 8.5 V to 20 V				
regulation	$V_{I} = 9 V \text{ to } 20 V$	29			ΠV
Ripple rejection	$V_{I} = 10 V \text{ to } 20 V$, $f = 120 \text{ Hz}$		48		dB
Output voltage	I _O = 1 mA to 100 mA		16		
regulation	$I_{O} = 1 \text{ mA to } 40 \text{ mA}$		9		mv
Output noise voltage	f = 10 Hz to 100 kHz		46		μV
Dropout voltage			1.7		V
Bias current			3.9		mA

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

[‡]This specification applies only for dc power dissipation permitted by absolute maximum ratings.

SLVS010D – JANUARY 1976 – REVISED OCTOBER 1995

electrical characteristics at specified virtual junction temperature, $V_I = 14 V$, $I_O = 40 mA$, $T_A = 25^{\circ}C$ (unless otherwise noted)

DADAMETED	TEST CONDITIONST	μΑ	LINUT		
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output voltage [‡]			8		V
Input voltage	V _I = 10.5 V to 23 V				
regulation	V _I = 11 V to 23 V		ΠIV		
Ripple rejection	$V_{I} = 13 V \text{ to } 23 V$, $f = 120 \text{ Hz}$		46		dB
Output voltage	I _O = 1 mA to 100 mA		18		
regulation	$I_{O} = 1 \text{ mA to } 40 \text{ mA}$	10			mv
Output noise voltage	f = 10 Hz to 100 kHz		54		μV
Dropout voltage			1.7		V
Bias current			4		mA

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

electrical characteristics at specified virtual junction temperature, $V_I = 16 V$, $I_O = 40 mA$, $T_A = 25^{\circ}C$ (unless otherwise noted)

DADAMETED	TEST CONDITIONST	μ Α			
	TEST CONDITIONS!	MIN	TYP	MAX	UNIT
Output voltage [‡]			9		V
Input voltage	V _I = 12 V to 24 V		45		m\/
regulation	V _I = 13 V to 24 V	40			IIIV
Ripple rejection	$V_{I} = 15 V \text{ to } 25 V$, $f = 120 \text{ Hz}$		45		dB
Output voltage	I _O = 1 mA to 100 mA	19			
regulation	$I_{O} = 1 \text{ mA to } 40 \text{ mA}$		11		шv
Output noise voltage	f = 10 Hz to 100 kHz		58		μV
Dropout voltage			1.7		V
Bias current			4.1		mA

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

[‡]This specification applies only for dc power dissipation permitted by absolute maximum ratings.

electrical characteristics at specified virtual junction temperature, $V_I = 14 V$, $I_O = 40 mA$, $T_A = 25^{\circ}C$ (unless otherwise noted)

DADAMETED	TEST CONDITIONST	μ Α			
FARAMETER	TEST CONDITIONS!	MIN	TYP	MAX	UNIT
Output voltage [‡]			10		V
Input voltage	VI = 13 V to 25 V		51		m\/
regulation	V _I = 14 V to 25 V	42			ΠIV
Ripple rejection	$V_{I} = 15 V \text{ to } 25 V$, $f = 120 \text{ Hz}$		44		dB
Output voltage	I _O = 1 mA to 100 mA		20		
regulation	$I_{O} = 1 \text{ mA to } 40 \text{ mA}$	11			mv
Output noise voltage	f = 10 Hz to 100 kHz		62		μV
Dropout voltage			1.7		V
Bias current			4.2		mA

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

[‡]This specification applies only for dc power dissipation permitted by absolute maximum ratings.

SLVS010D - JANUARY 1976 - REVISED OCTOBER 1995

electrical characteristics at specified virtual junction temperature, $V_I = 19 V$, $I_O = 40 mA$, $T_A = 25^{\circ}C$ (unless otherwise noted)

DADAMETED	TEST CONDITIONST	μ Α78L12Υ	LINUT
PARAMETER	TEST CONDITIONS	MIN TYP MAX	
Output voltage [‡]		12	V
Input voltage	VI = 14.5 V to 27 V	55	m\/
regulation	V _I = 16 V to 27 V	49	mv
Ripple rejection	$V_{I} = 15 V \text{ to } 25 V$, $f = 120 \text{ Hz}$	42	dB
Output voltage	I _O = 1 mA to 100 mA	22	mV
regulation	$I_{O} = 1 \text{ mA to } 40 \text{ mA}$	13	
Output noise voltage	f = 10 Hz to 100 kHz	70	μV
Dropout voltage		1.7	V
Bias current		4.3	mA

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

electrical characteristics at specified virtual junction temperature, $V_I = 23 V$, $I_O = 40 mA$, $T_A = 25^{\circ}C$ (unless otherwise noted)

DADAMETED	TEST CONDITIONST	μ /			
PARAMETER	TEST CONDITIONS!	MIN	TYP	MAX	UNIT
Output voltage [‡]			15		V
Input voltage	V _I = 17.5 V to 30 V		65		m\/
regulation	V _I = 20 V to 30 V	58			IIIV
Ripple rejection	$V_{I} = 18.5 V$ to 28.5 V, f = 120 Hz		39		dB
Output voltage	I _O = 1 mA to 100 mA		25		m\/
regulation	$I_{O} = 1 \text{ mA to } 40 \text{ mA}$	15			mv
Output noise voltage	f = 10 Hz to 100 kHz		82		μV
Dropout voltage			1.7		V
Bias current			4.6		mA

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

SLVS010D - JANUARY 1976 - REVISED OCTOBER 1995

APPLICATION INFORMATION

Figure 1. Fixed Output Regulator

Figure 3. Adjustable Output Regulator

Figure 2. Positive Regulator in Negative Configuration (V_I Must Float)

Figure 4. Current Regulator

Figure 5. Regulated Dual Supply

SLVS010D - JANUARY 1976 - REVISED OCTOBER 1995

APPLICATION INFORMATION

Figure 6. Output Polarity-Reversal Protection Circuit

operation with a load common to a voltage of opposite polarity

In many cases, a regulator powers a load that is not connected to ground but instead is connected to a voltage source of opposite polarity (e.g., operational amplifiers, level-shifting circuits, etc.). In these cases, a clamp diode should be connected to the regulator output as shown in Figure 6. This protects the regulator from output polarity reversals during startup and short-circuit operation.

Figure 7. Reverse-Bias Protection Circuit

reverse-bias protection

Occasionally, there exists the possibility that the input voltage to the regulator can collapse faster than the output voltage. This could occur, for example, when the input supply is crowbarred during an output overvoltage condition. If the output voltage is greater than approximately 7 V, the emitter-base junction of the series pass element (internal or external) could break down and be damaged. To prevent this, a diode shunt can be employed as shown in Figure 7.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1995, Texas Instruments Incorporated